لطفا قبل از ايجاد تاپيک در انجمن پارسیان ، با استفاده از کادر رو به رو جست و جو نماييد
فاکس فان دی ال دیتا
صفحه 3 از 79 نخستنخست 12345671353 ... آخرینآخرین
نمایش نتایج: از شماره 17 تا 24 , از مجموع 630

موضوع: بانک مقالات ریاضیات

  1. Top | #17
    پارسیان (شاپرزفا)
    Bauokstoney آنلاین نیست.
    ورود به پروفایل ایشان

    عنوان کاربر
    ناظـر ســایت
    تاریخ عضویت
    Jan 1970
    شماره عضویت
    3
    نوشته ها
    72,809
    میانگین پست در روز
    4.44
    حالت من : Asabani
    تشکر ها
    1,464
    از این کاربر 18,856 بار در 14,692 ارسال تشکر شده است.

    موضوع پیش فرض جهان ریاضیات در فضای نانو

    جهان ریاضیات در فضای نانو
    شاهرخ رضایی
    ریاضیات-مقالات
    علوم نانو و فناوری نانو بیانگر رهگذری به سوی دنیایی جدید هستند. سفر به اعماق سرزمین اتمها و مولکولها نوید دهنده اثراث اجتماعی شگفت‌انگیزی است: در علوم بنیادین، در فناوریهای نو، در طراحی مهندسی و تولیدات، در پزشکی و سلامت و در آموزش. پیش‌بینی‌های گسترده در حوزه کشفیات جدید، چالشها، درک مفاهیم، حتی هنوز فرم و محتوای موضوع، مه‌آلود و اسرارآمیز است. این مقاله می‌کوشد تا چالشهای دنیای ریاضیات را در مواجهه با دنیای شگفت‌انگیز نانو بررسی کند. به عبارت دیگر، ریاضیات در معماری پازل نانو چه نقشی خواهد داشت ؟
    همگان بر این نکته توافق دارند که پیشرفتهای بزرگ، مستلزم تعامل میان مهندسان، ژنتیست‌ها، شیمیدانان، فیزیکدانان، داروسازان، ریاضیدانان و علوم رایانه ای ها است. شکاف میان علوم و فناوری، میان آموزش و پژوهش، میان دانشگاه و صنعت، میان صنعت و بازار بر مجموعه تأثیرگذار خواهد بود. دلایل کافی مبتنی بر فصل مشترک میان نظامهای کلاسیک و فرهنگ ها موجود است.
    این انقلاب علمی و فناورانه، منحصر به فرد است. این بدین معنی است که می‌بایستی نه تنها در بعد علمی، که در سایر ابعاد، نیز زیرساختهای بنیادین با حداکثر انعطاف پذیری در برابر تغییرات را پیش‌گویی و پیش‌بینی کنیم.
    دانش ریاضیات به عنوان خط مقدم جبهه علم مطرح است. ویژگی بدیهی ریاضیات در علوم نانو «محاسبات علمی» است. محاسبات علمی در فناوریی که به عنوان فناوری انقلابی مطرح شده است. محاسبات علمی در طول، تفسیر آزمایشات، تهیه پیش‌بینی در مقیاس اتمی و مولکولی بر پایه تئوری کوانتومی و تئوریهای اتمی است.
    همانگونه که ریاضیات زبان علم است، محاسبات، ابزاری عمومی علم و کاتالیزوری برای تعاملات عمیق‌تر میان ریاضیات و علوم است. یک تیم محاسبات، درباره مدلشان و اثر محاسباتشان و تطبیق‌پذیری آن با واقعیت، به بحث می‌پردازند. «‌محاسبات» رابطی میان آزمایش و تئوری است. یک تئوری و یک مدل ریاضی، پیش نیاز محاسبات است و یک آزمایش تنها اعتبار بخش هر نوع تئوری، مدل و محاسبات است.
    مدلهای ریاضی، ستونهای راهگشا به سوی بنیاد علم و تئوریهای پیش بین هستند. مدلها، رابطهایی بنیادین در پروسه‌های علمی هستند و اغلب اوقات در سیستم‌های آموزشی به فاز مدلسازی و محاسبات، تأکید کافی نمی‌شود. یک مدل ریاضی بر پایه فرمولاسیون معادلات و نامعادلات اصول بنیادین استوار است و مدل درگیر با درک کامل پیچیدگیهای مسأله نظیر، جرم، اندازه حرکت و توازن انرژی است. در هر سیستم فیزیکی واقعی تقریب اجازه داده می‌شود، تا مدل را در یک قالب قابل حل عرضه کنند. اکنون می‌توان مدل را یا به صورت «تحلیلی» و یا بصورت «عددی» حل کرد. در این حالت مدلسازی ریاضی یک پروسه پیچیده است،زیرا می‌بایستی دقت و کارآیی را همزمان نشان دهد.
    در علوم نانو و فناوری نانو، مدلسازی نقش محوری را بر عهده دارد، بویژه وقتی که بخواهیم عملکرد ماکروسکوپی مواد را از طریق طراحی در مقیاس اتمی و مولکولی کنترل کنیم، آن هم در شرایطی که درجات آزادی زیاد باشد. مدلسازی ریاضی یک ضرورت در این فضای مه آلود است. تفسیر داده‌های آزمایشگاهی یک ضروت حتمی است. همچنین برای هدایت، تفسیر، بهینه سازی، توجیه رفتارهای آزمایشگاهی، مدلسازی ریاضی ضرورت می‌یابد.
    یک مدل مؤثر، راه رسیدن به تولیدات جدید، درک جدید رفتارشناسی، را کوتاه می‌کند و تصحیح گر هوشمندی است که از نتایج گذشته درس می‌گیرد.
    مدلسازی نه تنها ویژگی منحصر به فرد ریاضیات است بلکه پلی بسوی فرهنگهای مختلف علمی است.
    تئوری در هر مرحله از توسعه علم، نقش محوری دارد، ارزیابی حساسیت مدل به شرایط پروسه‌های فیزیکی ، و حصول اطمینان از اینکه معادلات و الگوریتمهای محاسباتی با شرایط کنترل آزمایشگاهی سازگارند، از چالشهای مهم است. تئوری نهایتاً بسوی تعریف نتایج و درک فیزیکی سیستم، میل خواهد کرد و اغلب اوقات ریاضیات جدیدی لازم نیست تا به منظور رسیدن به درک رفتار، ساخته شود.
    عبور از تئوریهای موجود ارزشمند است و اغلب نیز اتفاق می‌افتد. زمانی مدلها، مشابه سیستم‌های شناخته شده هستند که دقت ریاضی بالایی را داشته باشند اما در جهان شگفت ‌انگیز نانو، مدلهای مختلف و جدید، چالشهای جدی را در دانش ریاضیات پدید می‌آورند. تئوریهای جدید در مقیاسهای زمانی غیر قابل پیش‌گوئی اتفاق می‌افتند و تئوریهای قدرتمند در قالبهای عمیق شکل می‌گیرند. میان‌برهای اساسی لازم است تا شبیه‌سازی صورت گیرد:
    طراحی در مقیاس اتمی و مولکولی، کنترل و بهینه سازی عملکرد مواد و ابزار آلات، و کارآیی شبیه‌سازی رفتار طبیعی، از مهمترین چالشها است. این چالش‌ها نوید دهنده برهم کنشهای کامل میان حوزه‌های مختلف ریاضی خواهد بود.
    آثار اجتماعی این چالش‌ها زیاد و متنوع خواهد بود.
    منافع حاصل از مشغولیت ریاضیدانان فعال، توازن با چالشهای اصلی در زمینه رشد زیرساختهای ریاضیات، تغییرات در ساختار آموزش ریاضیات، از جمله آثار ورود ریاضیات به دنیای شگفت انگیز نانو خواهد بود.
    جامعه ریاضی می‌بایستی اصلاح شود: تئوریهای بنیادین، ریاضیات میان رشته‌ای و ریاضیات محاسباتی و آموزش ریاضیات.
    ریاضیات چه حوزه‌هایی را در بر خواهد گرفت؟ الگوریتمهای اصلی در حوزه‌های ریاضیات کاربردی و محاسباتی، علوم کامپیوتر، فیزیک آماری، نقش مرکزی و میان بر ساز را در حوزه نانو بر عهده خواهند داشت.
    برای روشن شدن موضوع برخی از اثرات ریاضیات را در فرهنگ نانو بررسی می‌کنیم:
    ـ روشهای انتگرال گیری سریع و چند قطبی سریع: اساسی و الزامی به منظور طراحی کدهای مدار (White, Aluru, Senturia) و انتگرال گیری به روش Ewala در کد نویسی در حوزه‌های شیمی کوانتوم و شیمی مولکولی (Darden ۱۹۹۹)
    ـ روشهای« تجزیه حوزه»، مورد استفاده در شبیه‌سازی گسترش فیلم تا رسیدن به وضوح نانوئی لایه‌های پیشرو مولکولی با مکانیک سیالات پیوسته در مقیاسهای ماکروسکوپیک (Hadjiconstantinou)
    ـ تسریع روشهای شبیه سازی دینامیک مولکولی (Voter ۱۹۹۷)
    ـ روشهای بهبود مش‌بندی تطبیق پذیر: کلید روشهای شبیه پیوسته که ترکیب کننده مقیاسهای ماکروئی، مزوئی، اتمی ومدلهای مکانیک کوانتوم از طریق یک ابزار محاسباتی است (Tadmor, Philips, Ortiz)
    ـ روشهای پیگردی فصل مشترک: نظیر روش نشاندن مرحله‌ای Sethian, Osher که در کدهای قلم زنی و رسوب‌گیری جهت طراحی شبه رساناها مؤثرند (Adalsteinsson, Sethian) و نیز در کدگذاری به منظور رشد هم بافت ها (Caflisch)
    ـ روشهای حداقل کردن انرژی هم بسته با روشهای بهینه سازی غیر خطی (المانی کلیدی برای کد کردن پروتیئن‌ها) (Pierce& Giles)
    ـ روشهای کنترل (مؤثر در مدلسازی رشد لایه نازک‌ها (Caflisch))
    ـ روشهای چند شبکه‌بندی که امروزه در محاسبات ساختار الکترونی و سیالات ماکرومولکولی چند مقیاسی بکار گرفته شده است.
    ـ روشهای ساختار الکترونی پیشرفته ، به منظور هدایت پژوهشها به سمت ابر مولکولها (Lee & Head – Gordon)
    «« در جهان هیچ چیز بهتر از راستی نیست »»

  2. Top | #18
    پارسیان (شاپرزفا)
    Bauokstoney آنلاین نیست.
    ورود به پروفایل ایشان

    عنوان کاربر
    ناظـر ســایت
    تاریخ عضویت
    Jan 1970
    شماره عضویت
    3
    نوشته ها
    72,809
    میانگین پست در روز
    4.44
    حالت من : Asabani
    تشکر ها
    1,464
    از این کاربر 18,856 بار در 14,692 ارسال تشکر شده است.

    موضوع پیش فرض ایجاد انگیزه در کلاس درس ریاضی

    ایجاد انگیزه در کلاس درس ریاضی
    ریاضیات-مقالات
    نقش رابطه معلم و دانش آموز در ایجاد انگیزه :
    یکی از چالشهای مهم موجود در آموزش ریاضی عدم برقراری ارتباط عاطفی مثبت بین معلمان این درس و دانش آموزان است .
    متأسفانه این امر باعث به وجود آمدن تفکرات و دیدگاه های منفی در اذهان دانش آموزان و والدین آنها نسبت به درس ریاضی شده است .و ادامه این روند یعنی ناسازگاری در ارتباط مؤثر منجر به بی -علاقگی و حتی تنفر و انزجار بسیاری از افراد نسبت به درس ریاضی شده است. اولین هدف یک معلم ریاضی در جو حاکم بر این درس ،باید برقرار کردن رابطه ی مطلوب دوستانه و حمایت کننده با دانش آموزان باشد . چنین هدفی فقط با تعامل میان معلم و دانش آموز حاصل می آید . چند روز اول مدرسه و اولین دیدارهای دانش آموزان با معلم از این نظر بسیار مهم است . بنا بر این به آن توجه خاص د اشت .معلمان تازه کار به طور معمول از معلمان قدیمی تر می شنوندکه تا هنگامی که دانش آموزان به او احترام نگذاشته اند در برابر آنها نخندد. زیرا ایشان بر این باورند که دانش آموزان برای احترام گذاشتن به معلم باید از وی بترسند. اما نظریه پردازان انگیزش می گویندکه به دانش آموزان نشان دهیدکه به آنها علاقه دارید و می توانند به شما اعتماد کنند و در صورت نیاز برای هر کمکی به شما رجوع نمایند. معلمان بر خلاف خلبانها و معمارها یا جراحها ، آموزش فشرده ای در مهارتهای حرفه شان ندیده اند. به نوعی از آنان انتظار می رود که وقتی وارد کلاس می شونددر مورد مسائل پیچیده روابط بشری تجربه و مهارت داشته باشند . از معلمها خواسته می شود که در جریان فعالیت روزانه شان :
    1) انگیزه یادگیری ایجاد کنند .
    2) مشوق خود مختاری باشند و عزت نفس را تقویت کنند .
    3) از شدت اضطراب (anxiety ) بکاهند و ترس را از بین ببرند.
    4) يأس و نومیدی ( frustration ) را کم کنند.
    5) سبب کاهش تعارضها و کشمکشها(conflict) شوند و خشم را فرو بنشانند .
    یکی از معلمها می گفت :« من از قبل می دانم که دانش آموز به چه چیزی نیاز دارد . من نیاز او را حس می کنم . او نیاز دارد قبولش داشته باشند . به او احترام بگذارند، دوستش داشته باشند. به او اعتماد کنند ، او نیاز دارد که تشویقش کنند ، پشتیبانی اش کنند،او را به فعالیت وا دارند و موجبات تفریح و خوشی اش را فراهم آورند تا بتوانند به کاوش و آزمایش بپردازند. و به نتایج موفقیت آمیزی برسد، عجب حکایتی است ! او این همه نیاز دارد . و من بايداينگونه نيازش را برآورده نمايم،عقل و دانایی سلیمان است و بینش و فراست ابن سینا و علم و دانش خیام و ایثار و از خود گذشتگی فلو رانس نایتینگل»
    «« در جهان هیچ چیز بهتر از راستی نیست »»

  3. Top | #19
    پارسیان (شاپرزفا)
    Bauokstoney آنلاین نیست.
    ورود به پروفایل ایشان

    عنوان کاربر
    ناظـر ســایت
    تاریخ عضویت
    Jan 1970
    شماره عضویت
    3
    نوشته ها
    72,809
    میانگین پست در روز
    4.44
    حالت من : Asabani
    تشکر ها
    1,464
    از این کاربر 18,856 بار در 14,692 ارسال تشکر شده است.

    موضوع پیش فرض رابطه ی ریاضی فاصله ی سیارات تا خورشید

    رابطه ی ریاضی فاصله ی سیارات تا خورشید
    ریاضیات-مقالات
    سال ۱۷۶۶ میلادی، یوهان تیتوس منجم آلمانی توانست رابطه ساده ای بیابد که با استفاده از آن می شد فاصله سیارات از خورشید را بدست آورد. چند سال بعد نیز دیگر منجم هموطن او، یوهان الرت بفد، این رابطه را مستقلا” دوباره کشف کرد.البته این رابطه را هر دو از طریق بازی با اعداد بدست آوردند و بدست آوری آن رابطه پایۀ علمی نداشت. امروزه این رابطه به رابطه تیتوس_بفد مشهور است. این رابطه بدین صورت است:
    فاصله سیاره از خورشید(بر حسب فاصله متوسط زمین از خورشید)=۰.۴+(۰.۳*n)
    … , n=۰, ۱, ۲, ۴, ۸
    اعداد بدست آمده با دقت خوبی با فاصله واقعی سیارات همخوانی داشت:
    پارسیان (شاپرزفا)
    برای فاصله ۲.۸ برابر فاصله زمین از خورشید در آن زمان سیاره ای یافت نشده بود. بسیاری از اخترشناسان عقیده داشتند که سیاره ای کوچک در این فاصلۀ بین مریخ و مشتری وجود دارد که کشف نشده است. جستجوی منظم نوار دایرفةالبروج برای یافت این سیارۀ مفقود از اواخر قرن هجدهم شروع شد و سرانجام در اولین روز قرن نوزدهم، یک منجم ایتالیایی به نام جوزپه پیاتزی، موفق شد جسم کوچکی را در حدود این فاصله از خورشید بیابد که آن را سفرفس نامید. بعد از آن نیز اجرام دیگری با همین فاصله از خورشید کشف شدند. اخترشناسان آن دوران این نظریه را پیش کشیدند که در آن فاصله از خورشید، بجای یک سیاره، تعداد زیادی سیارک وجود دارد که با کشف تعدادزیادی از این سیاکها در سالهای بعد این نظریه تایید شد.در حقیقت رابطه تیتوس_بفد محرک اصلی کشف سیارکها بود.
    سالها بعد نیز سیارۀ اورانوس کشف شد که فاصله اش با فاصله پیشبینی شده توسط رابطه تیتوس_بفد نیز می خواند!(۱۹.۶ بنابر رابطه و ۱۹.۹ بنابر اندازه گیری). اما فاصله سیارات بعدی نپتون و پلوتو در این رابطه صدق نمی کنند. امروزه نظریه ای که به نظریه واهلش دینامیکی(Dynamical Relaxation) موسوم است توضیحی برای این رابطه یافته است. بنا به این نظریه، سیارات نخست در مدارات متفاوت تکوین یافتند؛ اما سپس به مداراتی منتقل شدند که نیروهای اغتشاشی گرانشی دیگر سیارات را به حداقل برسانند. نتیجه این کار از نظر ریاضی به روابطی شبیه رابطه تیتوس_بفد منجر می شود.
    «« در جهان هیچ چیز بهتر از راستی نیست »»

  4. Top | #20
    پارسیان (شاپرزفا)
    Bauokstoney آنلاین نیست.
    ورود به پروفایل ایشان

    عنوان کاربر
    ناظـر ســایت
    تاریخ عضویت
    Jan 1970
    شماره عضویت
    3
    نوشته ها
    72,809
    میانگین پست در روز
    4.44
    حالت من : Asabani
    تشکر ها
    1,464
    از این کاربر 18,856 بار در 14,692 ارسال تشکر شده است.

    موضوع پیش فرض تاریخچه ریاضیات

    تاریخچه ریاضیات
    ریاضیات-مقالات
    انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور كه مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش دقیق تری بوجود آورد لذا به كمك انگشتان دست دستگاه شماری پدید آورد كه مبنای آن ۶۰ بود. این دستگاه شمار كه بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است كه آثاری از آن در كهن ترین مدارك موجود یعنی نوشته های سومری مشاهده می شود. سومریها كه تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساكن بودند. آنها در حدود ۲۵۰۰ سال قبل از میلاد با امپراطوری سامی عكاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
    نخستین دانشمند معروف یونانی طالس ملطلی (۶۳۹- ۵۴۸ ق. م.) است كه در پیدایش علوم نقش مهمی به عهده داشت و می توان وی را موجد علوم فیزیك، نجوم و هندسه دانست. در اوایل قرن ششم ق. م. فیثاغورث (۵۷۲-۵۰۰ ق. م.) از اهالی ساموس یونان كم كم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مكتب فلسفی خویش همت گماشت. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی كه در ۴۹۰ ق. م. در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی كیوس قضایای متفرق آن زمان را گردآوری كرد و در حقیقت همین قضایا است كه مبانی هندسه جدید ما را تشكیل می دهند.
    در قرن چهارم قبل از میلاد افلاطون در باغ آكادموس در آتن مكتبی ایجاد كرد كه نه قرن بعد از او نیز همچنان برپا ماند. این فیلسوف بزرگ به تكمیل منطق كه ركن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضی دان معاصر وی ادوكس با ایجاد تئوری نسبتها نشان داد كه كمیات اندازه نگرفتنی كه تا آن زمان در مسیر علوم ریاضی گودالی حفر كرده بود هیچ چیز غیرعادی ندارد و می توان مانند سایر اعداد قواعد حساب را در مورد آنها به كار برد.
    در قرن دوم ق. م. نام تنها ریاضی دانی كه بیش از همه تجلی داشت ابرخس یا هیپارك بود. این ریاضیدان و منجم بزرگ گامهای بلند و استادانه ای در علم نجوم برداشت و مثلثات را نیز اختراع كرد. بطلمیوس كه به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارد در تعقیب افكار هیپارك بسیار كوشید. در سال ۶۲۲ م. كه حضرت محمد (ص) از مكه هجرت نمود در واقع آغاز شكفتگی تمدن اسلام بود.
    در زمان مأمون خلیفه عباسی تمدن اسلام به حد اعتلای خود رسید به طوری كه از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی زبان علمی بین المللی شد. از ریاضیدانان بزرگ اسلامی این دوره یكی خوارزمی می باشد كه در سال ۸۲۰ به هنگام خلافت مأمون در بغداد كتاب مشهور الجبر و المقابله را نوشت.
    دیگر ابوالوفا (۹۹۸-۹۳۸) است كه جداول مثلثاتی ذیقیمتی پدید آورد و بالاخره محمد بن هیثم (۱۰۳۹-۹۶۵) معروف به الحسن را باید نام برد كه صاحب تألیفات بسیاری در ریاضیات و نجوم است. قرون وسطی از قرن پنجم تا قرن دوازدهم یكی از دردناكترین ادوار تاریخی اروپاست. عامه مردم در منتهای فلاكت و بدبختی به سر می بردند. برجسته ترین نامهایی كه در این دوره ملاحظه می نماییم در مرحله اول لئونارد بوناكسی (۱۲۲۰-۱۱۷۰) ریاضیدان ایتالیایی است. دیگر نیكلاارسم فرانسوی می باشد كه باید او را پیش قدم هندسه تحلیلی دانست.
    در قرون پانزدهم و شانزدهم دانشمندان ایتالیایی و شاگردان آلمانی آنها در حساب عددی جبر و مكانیك ترقیات شایان نمودند. در اواخر قرن شانزدهم در فرانسه شخصی به نام فرانسوا ویت (۱۶۰۳-۱۵۴۰م) به پیشرفت علوم ریاضی خدمات ارزنده‌ای نمود. وی یكی از واضعین بزرگ علم جبر و مقابله جدید و در عین حال هندسه دان قابلی بود.
    كوپرنیك (۱۵۴۳-۱۴۷۳) منجم بزرگ لهستانی در اواسط قرن شانزدهم دركتاب مشهور خود به نام درباره دوران اجسام آسمانی منظومه شمسی را این چنین ارائه داد:
    ۱) مركز منظومه شمسی خورشید است نه زمین.
    ۲) در حالیكه ماه به گرد زمین می چرخد سیارات دیگر همراه با خود زمین به گرد خورشید می چرخند.
    ۳) زمین در هر ۲۴ ساعت یكبار حول محور خود می چرخد، نه كره ستاره های ثابت.
    پس از مرگ كوپرنیك مردی به نام تیكوبراهه در كشور دانمارك متولد شد. وی نشان داد كه حركت سیارات كاملاً با نمایش و تصویر دایره های هم مركز وفق نمی دهد. تجزیه و تحلیل نتایج نظریه تیكوبراهه به یوهان كپلر كه در سال آخر زندگی براهه دستیار وی بود محول گشت. پس از سالها كار وی به نخستین كشف مهم خود رسید و چنین یافت كه سیارات در حركت خود به گرد خورشید یك مدار كاملاً دایره شكل را نمی پیمایند بلكه همه آنها بر روی مدار بیضی شكل حركت می كنند كه خورشید نیز در یكی از دو كانون آنها قرار دارد. قرن هفدهم در تاریخ ریاضیات قرنی عجیب و معجزه آساست.
    از فعالترین دانشمندان این قرن كشیشی پاریسی به نام مارن مرسن كه می توان وی را گرانبها ترین قاصد علمی جهان دانست. در سال ۱۶۰۹ گالیله ریاضیات و نجوم را در دانشگاه پادوا در ایتالیا تدریس می كرد. وی یكی از واضعین مكتب تجربی است. وی قانون سقوط اجسام را به دست آورد و مفهوم شتاب را تعریف كرد. در همان اوقات كه گالیله نخستین دوربین نجومی خود را به سوی آسمان متوجه كرد در ۳۱ مارس ۱۵۹۶ در تورن فرانسه رنه دكارت به دنیا آمد. نام ریاضیدان بزرگ سوئیسی «پوب گولدن» را نیز باید با نهایت افتخار ذكر كرد.
    شهرت وی بواسطه قضایای مربوط به اجسام دوار است كه نام او را دارا می باشد و در كتابی به نام مركزثقل ذكر شده. دیگر از دانشمندان برجسته قرن هفدهم پی یر دوفرما ریاضیدان بزرگ فرانسوی است كه یكی از برجسته ترین آثار او تئوری اعداد است كه وی كاملاً بوجود آورنده آن می باشد. ریاضیدان بزرگ دیگری كه در این قرن به خوبی درخشید ژیرارد زارك فرانسوی است كه بیشتر به واسطه كارهای درخشانش در هنر معماری شهرت یافت و بالاخره ریاضی دان دیگر فرانسوی یعنی روبروال كه بواسطه ترازوی مشهوری كه نام او را همراه دارد همه جا معروف است.
    در اواسط قرن هفدهم كم كم مقدمات اولیه آنالیز عناصر بی نهایت كوچك در تاریكی و ابهام به وجود آمد و رفته رفته سر و صدای آن به گوش مردم رسید. بدون شك پاسكال همراه با دكارت و فرما یكی از سه ریاضیدان بزرگ نیمه اول قرن هفدهم بود و نیز می توان ارزش او را در علم فیزیك برابر گالیله دانست.
    در نیمه دوم قرن هفدهم ریاضی بطور دقیق دنبال شد. سه نابغه فنا ناپذیر این دوره یعنی نیوتن انگلیسی، لایب نیتس آلمانی و هویگنس هلندی جهان علم را روشن كرده بودند. لایب نیتس در سال ۱۶۸۴ با انتشار مقاله ای درباره حساب عناصر بی نهایت كوچك انقلابی برپا كرد. هوگنس نیز در تكمیل دینامیك و مكانیك استدلالی با نیوتن همكاری كرد و عملیات مختلف آنها باعث شد كه ارزش واقعی حساب انتگرال در توسعه علوم دقیقه روشن شود.
    در قرن هجدهم دیگر تمام طوفانهای قرن هفدهم فرو نشست و تحولات این قرن عجیب به یك دوره آرامش مبدل گردید. دالامبر فرانسوی آنالیز ریاضی را در مكانیك به كار برد و از روشهای آن استفاده كرد. كلرو رقیب او در ۱۸ سالگی كتابی به نام تفحصات درباره منحنی های دو انحنایی انتشار داد و در مدت شانزده سال رساله ای تهیه و به آكادمی علوم تقدیم نمود كه شامل مطالب قابل توجهی مخصوصاً در مورد مكانیك آسمانی و هندسه بی نهایت كوچكها بود. دیگر لئونارد اویلر ریاضیدان بزرگ سوئیسی است كه در ۱۵ آوریل ۱۷۰۷ م. در شهر بال متولد شد و در ۱۷ سپتامبر ۱۷۸۳ م. در روسیه درگذشت.
    لاگرانژ از جمله بزرگترین ریاضیدانان تمام ادوار تاریخ بشر است. مكانیك تحلیلی او كه در سال ۱۷۸۸ . عمومیت یافت بزرگترین شاهكار وی به شمار می رود. لاپلاس كه در تدریس ریاضی دانشسرای عالی پاریس معاون لاگرانژ بود كتابی تحت عنوان مكانیك آسمانی در پنج جلد انتشار داد. گاسپار مونژ این نابغه دانشمند وقتی كه هنوز بیست سال نداشت شاخه جدید علم هندسه به نام هندسه ترسیمی را بوجود آورد.
    ژان باتیست فوریه در مسأله انتشار حرارت روش بدیع و جالبی اختراع كرد كه یكی از مهمترین مباحث آنالیز ریاضی گردید. از دیگر دانشمندان بزرگ این قرن سیمون دنی پوآسون (۱۸۴۰-۱۷۸۱) فرانسوی و شاگرد لاپلاس می باشد كه اكتشافات مهمی در ریاضیات نمود گائوس ریاضیدان شهیر آلمانی تئوری كامل مغناطیس را بوجود آورد. مطالعات او درباره انحناء و ترسیم نقشه ها و نمایش سطوح بر صفحات اصلی و اساسی می باشد.
    كوشی فرانسوی كه در سراسر نیمه اول قرن پانزدهم بر دیگر هموطنان برتری داشت با منطق دقیق خود تئوری های زیادی از حساب انتگرال را توسعه داد. آبل در سال ۱۸۲۴ ثابت نمود كه صرفنظر از معادلات درجه اول تا درجه چهارم هیچ دستور جبری كه بتواند معادله درجه پنجم را به نتیجه برساند وجود ندارد. گالوا كه در ۲۶ اكتبر ۱۸۱۱ م. در پاریس متولد شد تئوری گروهها را كه قبلاً بوسیله كوشی و لاگرانژ مطالعه شده بود در معادلات جبری به كار برد و گروه جانشینی هر معادله را مشخص كرد.
    دیگر از دانشمندان بزرگ این قرن ژنرال پونسله فرانسوی می باشد كه آثاری همچون «موارد استعمال آنالیز در ریاضی» و «خواص تصویری اشكال» دارد همچنین لازار كانو فرانسوی كه اكتشافات هندسی او دارای اهمیت فوق العاده می باشد. میشل شال هندسه مطلق را با بالاترین درجه استادی به بالاترین حد ممكن ترقی داد. در نیمه اول قرن نوزدهم ریاضیدان روسی نیكلاس ایوانویچ لوباچوشكی نخستین كشف خود را درباره هندسه غیراقلیدسی به جامعه ریاضیات و فیزیك قازان تقدیم كرد.
    ادوارد كومرنیز در نتیجه اختراع نوعی از اعداد به نام اعداد ایده آل جایزه ریاضیات آكادمی علوم پاریس را از آن خود كرد. در اینجا ذكر نام دانشمندانی نظیر شارل وایرشتراس و شارل هرمیت كه در مورد توابع بیضوی كشفیات مهمی نمودند ضروری است. ژرژ كانتور ریاضیدان آلمانی مكه در روسیه تولد یافته بود در ربع آخر قرن نوزدهم با وضع فرضیه مجموعه ها اساس هندسه اقلیدسی را در هم كوفت.
    كانتور مجموعه را به دو صورت زیر تعریف كرد:
    ۱) اجتماع اشیایی كه دارای صفت ممیزه مشترك باشند هر یك از آن اشیاء را عنصر مجموعه می گویند.
    ۲) اجتماع اشیایی مشخص و متمایز
    ولی ابتكاری و تصوری هنری پوانكاره یا غول فكر ریاضی آخرین دانشمند جهانی است كه به همه علوم واقف بود. وی در بیست و هفت سالگی بزرگترین اكتشاف خود یعنی توابع فوشین را به دنیای دانش تقدیم نمود. بعد از پوانكاره ریاضیدان سوئدی متیاگ لفلر كارهای او را ادامه داد و سپس ریاضیدان نامی فرانسوی امیل پیكارد در این راه قدم نهاد. در اواخر قرن نوزدهم علم فیزیك ریاضی به منتها درجه تكامل خود رسید و دانش نجوم مكانیك آسمانی تكمیل گردید. امروزه ریاضیات بیش از پیش در حریم سایر علوم نفوذ كرده و نه فقط علوم نجوم و فیزیك و شیمی تحت انضباط آن درآمده اند بلكه اصولاً ریاضیات دانش مطلق و روح علم شده است.
    «« در جهان هیچ چیز بهتر از راستی نیست »»

  5. Top | #21
    پارسیان (شاپرزفا)
    Bauokstoney آنلاین نیست.
    ورود به پروفایل ایشان

    عنوان کاربر
    ناظـر ســایت
    تاریخ عضویت
    Jan 1970
    شماره عضویت
    3
    نوشته ها
    72,809
    میانگین پست در روز
    4.44
    حالت من : Asabani
    تشکر ها
    1,464
    از این کاربر 18,856 بار در 14,692 ارسال تشکر شده است.

    موضوع پیش فرض نظریه‌ی پیچیدگی محاسباتی

    نظریه‌ی پیچیدگی محاسباتی
    ریاضیات-مقالات
    نظریه‌ی پیچیدگی محاسباتی شاخه‌ای از علوم کامپیوتر و ریاضی است که به بررسی دشواری حل مسائل به وسیله‌ی رایانه (به عبارت دقیق‌تر به‌ صورت الگوریتمی) می‌پردازد. این نظری بخشی از نظریه‌ی محاسباتی است که با منابع مورد نیاز برای حل یک مساله سروکار دارد. عمومی‌ترین منابع زمان (چقدر زمان برای حل کردن مساله لازم است) و فضا (چقدر حافظه مورد نیاز است) می‌باشند. سایر منابع می‌تواند تعداد پروسسور‌های موازی (در حالت پردازش موازی) و … باشند. اما در این مقاله ما در مورد عواملی مثل عوامل بالا بحثی نکرده‌ایم. باید به این نکته توجه داشت که نظریه پیچیدگی با نظریه قابل حل بودن متفاوت می‌باشد. این نظریه در مورد قابل حل بودن یک مساله بدون توجه به منابع مورد نیاز آن، بحث می‌کند. بعد از این نظریه که بیان می‌کند کدام مسائل قابل حل می‌باشند و کدام مسائل غیرقابل حل، این سوال به نظر طبیعی می‌رسد که درجه سختی مساله چقدر است. نظریه پیچیدگی محاسبات در این زمینه می‌باشد.
    برای سادگی کار مساله‌ها به کلاس‌هایی تقسیم می‌شوند به طوری که مساله‌های یک کلاس از حیث زمان یا فضای مورد نیاز با هم مشابهت دارند. این کلاس‌ها در اصطلاح کلاس‌های پیچیدگی خوانده می‌شوند.
    بعضی منابع دیگری که در این نظریه مورد بررسی قرار می‌گیرند، مثل عدم تعین صرفا جنبه‌ی صوری دارند ولی بررسی آن‌ها موجب درک عمیق‌تر منابع واقعی مثل زمان و فضا می‌شود.
    معروف‌ترین کلاس‌های پیچیدگی، P و NP هستند که مساله‌ها را از نظر زمان مورد نیاز تقسیم‌بندی می‌کنند. به طور شهودی می‌توان گفت P کلاس مساله‌هایی است که الگوریتم‌های سریع برای پیدا کردن جواب آن‌ها وجود دارد. اما NP شامل آن دسته از مساله‌هاست که اگرچه ممکن است پیدا کردن جواب ‌برای آن‌ها نیاز به زمان زیادی داشته باشد اما چک کردن درستی جواب به وسیله‌ٔ یک الگوریتم سریع ممکن است. البته کلاس‌های پیچیدگی به مرتبه سخت‌تری از NP نیز وجود دارند.
    PSPACE: مسائلی که با اختصاص دادن مقدار کافی حافظه (که این مقدار حافظه معمولا تابعی از اندازه مساله می‌باشد) بدون در نظر گرفتن زمان مورد نیاز به حل آن، می‌توانند حل شوند.
    EXPTIME: مسائلی که زمان مورد نیاز برای حل آنها به صورت توانی می‌باشد. مسائل این کلاس بسیار جذاب و سرگرم کننده می‌باشند (حداقل برای ما!). و شامل همه مسائل سه کلاس بالایی نیز می‌باشد. نکته جالب و قابل توجه این می‌باشد که حتی این کلاس نیز جامع نمی‌باشد. یعنی مسائلی وجود دارند که بهترین و کارامدترین الگوریتم‌ها نیز زمان بیش‌تری نسبت به زمان توانی می‌گیرند.
    Un-decidable یا غیرقابل تصمیم‌گیری: برای برخی از مسائل می‌توانیم اثبات کنیم که الگوریتمی را نمی‌شود پیدا کردن که همیشه آن مساله را حل می‌کند، بدون در نظر گرفتن فضا و زمان. در این زمینه آقای ریچارد لیپتون (از صاحب‌نظران این زمینه) در مقاله‌ای نوشته‌اند: یک روش اثبات غیررسمی برای این مساله می‌تواند این باشد: تعداد زیادی مساله، مثلا به زیادی اعداد حقیقی وجود دارند، ولی تعداد برنامه‌هایی که مسائل را حال می‌کنند در حد اعداد صحیح می‌باشند. اما ما همیشه می‌توانیم مسائل به دردبخوری را پیدا کنیم که قابل حل نمی‌باشند.
    آیا P=NP می‌باشد؟
    این سوال که آیا مسائل کلاس P دقیقا همان مسائل کلاس NP می باشند، یکی از مهم ترین سوال‌های بدون جواب علوم کامپیوتری می‌باشد. به بیانی دیگر اگر همیشه به این سادگی باشد که بتوان صحت یک راه‌حل را بررسی کرد، آیا پیدا کردن راه‌حل نیز می‌تواند به آن سادگی باشد؟ برای این سوال یک جایزه ۱ میلیون دلاری از طرف انسیتیتو ریاضی Clay در نظرگرفته شده‌است. ما هیچ دلیلی برای قبول کردن آن نداریم ولی بین نظریه‌پردازان نیز این باور وجود دارد که باید جواب این سوال منفی باشد. همچنین دلیلی برای رد کردن آن نیز وجود ندارد.
    پیچیدگی زمانی
    پیچیدگی زمانی یک مساله تعداد گام‌های مورد نیاز برای حل یک نمونه از یک مساله به عنوان تابعی از اندازه‌ی ورودی (معمولا بوسیله تعداد بیت‌ها بیان می‌شود) بوسیله کارآمدترین الگوریتم می‌باشد. برای درک بهتر این مساله، فرض کنید که یک مساله با ورودی n بیت در n² گام حل شود. در این مثال می‌گوییم که مساله از درجه پیچیدگی n² می‌باشد. البته تعداد دقیق گام‌ها بستگی به ماشین و زبان مورد استفاده دارد. اما برای صرف نظر کردن از این مشکل، نشانه‌گذاری O بزرگ (Big O notation) معمولا بکار می‌رود. اگر یک مساله پیچیدگی زمانی از مرتبه (O(n² روی یک کامپیوتر نمونه داشته باشد، معمولا روی اکثر کامپیوتر‌های دیگر نیز پیچیدگی زمانی از مرتبه (O(n² خواهد‌داشت. پس این نشانه به ما کمک می‌کند که صرف نظر از یک کامپیوتر خاص، یک حالت کلی برای پیچیدگی زمانی یک الگوریتم ارائه دهیم.
    معرفی NP-Complete
    تا این بخش از مقاله مسائلی معرفی شدند که اگر بتوان روشی برای حل آنها حدس زد، در زمان نزدیک به زمان خطی و یا حداقل در زمان چند جمله‌ای برحسب ورودی می‌توانستیم صحت راه‌حل را بررسی کنیم. ولی NP-Completeها مسائلی هستند که اثبات شده به سرعت قابل حل نیستند. در تئوری پیچیدگی NP-Completeها دشوارترین مسائل کلاس NP هستند و جزء مسائلی می‌باشند که احتمال حضورشان در کلاس P خیلی کم است. علت این امر این می‌باشد که اگر یک راه‌حل پیدا شود که بتواندیک مساله NP-Complete را حل کند، می‌توان از آن الگوریتم برای حل کردن سریع همه مسائل NP-Complete استفاده کرد. به خاطر این مساله و نیز بخاطر اینکه تحقیقات زیادی برای پیدا کردن الگوریتم کارآمدی برای حل کردن اینگونه مسائل با شکست مواجه شده‌اند، وقتی که مساله‌ای به عنوان NP-Complete معرفی شد، معمولا اینطور قلمداد می‌شود که این مساله در زمان Polynomial قابل حل شدن نمی‌باشد، یا به بیانی دیگر هیچ الگوریتمی وجود ندارد که این مساله را در زمان Polynomial حل نماید. کلاس متشکل از مسائل NP-Compete با نام NP-C نیز خوانده می‌شود.
    بررسی ناکارآمد بودن زمانی
    مسائلی که در تئوری قابل حل شدن می‌باشند ولی در عمل نمی‌توان آنها را حل کرد، محال یا ناشدنی می‌نامند. در حالت کلی فقط مسائلی که زمان آنها به صورت Polynomial می‌باشد و اندازه ورودی آنها در حد کوچک یا متوسط می‌باشد قابل حل شدن می‌باشند. مسائلی که زمان آنها به صورت توانی (EXPTIME-complete) می‌باشند به عنوان مسائل محال یا ناشدنی شناخته شده‌اند. همچنین اگر مسائل رده NP جز مسائل رده P نباشند، مسائل NP-Complete نیز به عنوان محال یا نشدنی خواهند بود. برای ملموس‌تر شدن این مساله فرض کنید که یک مساله ۲n مرحله لازم دارد تا حل شود (n اندازه ورودی می‌باشد). برای مقادیر کوچک n=۱۰۰ و با در نظر گرفتن کامپیوتری که ۱۰۱۰ (۱۰ giga) عملیات را در یک ثانیه انجام می‌دهد، حل کردن این مساله زمانی حدود ۱۰۱۲ * ۴ سال طول خواهد کشید، که این زمان از عمر فعلی جهان بیشتر است!
    چرا حل مسائل NP-Complete مشکل است؟
    به خاطر اینکه مسائل بسیار مهمی در این کلاس وجود دارد، تلاش‌های بسیار زیادی صورت گرفته است تا الگوریتم‌هایی برای حل مسائل NP که زمان آن به صورت Polynomial از اندازه ورودی باشد، پیدا شود. باوجود این، مسائل خیلی بیشتری در این رده وجود دارد که زمان لازم برای حل آن‌ها به صورت Super-Polynomial می‌باشد. این مساله که آیا این مسائل در زمان Polynomial قابل حل شدن می‌باشند، یکی از مهم‌ترین چالش‌های علوم کامپیوتری می‌باشد.
    روش‌هایی برای حل مسائل NP-Complete
    به خاطر اینکه تعداد مسائل NP-Complete بسیار زیاد می‌باشد، شناختن اینگونه مسائل به ما کمک می‌کند تا دست از پیدا کردن یک الگوریتم سریع و جامع برداریم و یکی از روش‌های زیر را امتحان کنیم:
    به کار بردن یک روش حدسی: یک الگوریتم که تا حد قابل قبولی در بیشتر موارد درست کار می‌کند، ولی تضمینی وجود ندارد که در همه موارد با سرعت قابل قبول نتیجه درستی تولید کند.
    حل کردن تقریبی مساله به جای حل کردن دقیق آن: اغلب موارد این روش قابل قبول می‌باشد که با یک الگوریتم نسبتا سریع یک مساله را به طور تقریبی حل کنیم که می‌توان ثابت کرد جواب بدست آمده تقرییا نزدیک به جواب کاملا صحیح می‌باشد.
    الگوریتم‌های زمان توانی را به کار ببریم: اگر واقعا مجبور به حل کردن مساله به طور کامل هستیم، می‌توان یک الگوریتم با زمان توانی نوشت و دیگر نگران پیدا کردن جواب بهتر نباشیم.
    از خلاصه کردن استفاده کنیم: خلاصه کردن به این مفهوم می‌باشد که از برخی اطلاعات غیرضروری می‌توان صرف نظر کرد. اغلب این اطلاعات برای پیاده‌سازی مساله پیچیده در دنیای واقعی مورد نیاز می‌باشد، ولی در شرایطی که بخواهیم به نحوی مساله را حل کنیم (حداقل به صورت تئوری و نه در عمل) می‌توان از برخی اطلاعات غیرضروری صرف نظر کرد.
    نمونه مساله
    یک مسیر ساده در یک گراف به مسیری اطلاق می‌شود که هیچ راس یا یال تکراری در آن وجود‌نداشته‌باشد. برای پیاده سازی مساله ما به این احتیاج داریم که بتوانیم یک سوال بلی/خیر طراحی کنیم. با داشتن گراف G، رئوس s و t و عدد k آیا یک مسیر ساده از s به t با حداقل k یال وجوددارد؟ راه‌حل این مساله جواب سوال خواهد بود. چرا این مساله NP می‌باشد؟ چون اگر مسیری به شما داده شود، به راحتی می‌توان طول مسیر را مشخص نمود و آن را با k مقایسه کرد. همه این کار‌ها در زمان خطی و صد البته در زمان Polynomial قابل انجام می‌باشد. اگر چه می نمی‌دانیم که این مساله آیا در کلاس P می‌باشد یا نه، با این حال روش خاصی برای پیدا کردن مسیری با ویژگی‌های ذکر شده نیز وجود بیان نشده است. و در حقیقت این مساله جز NP-Completeها می‌باشد، پس می‌توان به این نتیجه نیز رسید که الگوریتمی کارآمد با چنان عملیات وجود ندارد. الگوریتم‌هایی وجود دارند که این مساله را حل می‌کنند، به عنوان مثال همه مسیر‌های موجود و ممکن را بررسی نموده و نتایج مقایسه شوند که آیا این مسیر مساله را حل می‌کند یا نه. اما تا آنجایی که می‌دانیم، الگوریتمی با زمان Polynomial برای حل این مساله وجود ندارد.
    «« در جهان هیچ چیز بهتر از راستی نیست »»

  6. Top | #22
    پارسیان (شاپرزفا)
    Bauokstoney آنلاین نیست.
    ورود به پروفایل ایشان

    عنوان کاربر
    ناظـر ســایت
    تاریخ عضویت
    Jan 1970
    شماره عضویت
    3
    نوشته ها
    72,809
    میانگین پست در روز
    4.44
    حالت من : Asabani
    تشکر ها
    1,464
    از این کاربر 18,856 بار در 14,692 ارسال تشکر شده است.

    موضوع پیش فرض حد هندسی

    حد هندسی
    ریاضیات-مقالات
    دايره هايي با مشخصات زير در نظر مي گيريم :
    الف)دايره ي C به مركز (1,0) و شعاع 1 واحد .
    ب)دايره ي O به مركز (0,0) و شعاع r واحد .
    اگر نقاط S , R به ترتيب "محل تلاقي دايره ي O با محور y ها(ي نامنفي) " و "محل تلاقي دواير C , O " باشند و خط واصل نقاط S , R ، محور x ها را در نقطه ي P قطع كند . رفتار نقطه ي P وقتي r به سمت صفر ميل مي كند ، چگونه است ؟
    پارسیان (شاپرزفا)
    «« در جهان هیچ چیز بهتر از راستی نیست »»

  7. Top | #23
    پارسیان (شاپرزفا)
    Bauokstoney آنلاین نیست.
    ورود به پروفایل ایشان

    عنوان کاربر
    ناظـر ســایت
    تاریخ عضویت
    Jan 1970
    شماره عضویت
    3
    نوشته ها
    72,809
    میانگین پست در روز
    4.44
    حالت من : Asabani
    تشکر ها
    1,464
    از این کاربر 18,856 بار در 14,692 ارسال تشکر شده است.

    موضوع پیش فرض تابع عددی

    تابع عددی
    ریاضیات-مقالات
    در ریاضیات، یک تابع رابطه‌ای است که هر متغیر دریافتی خود را به فقط یک خروجی نسبت می‌دهد. علامت استاندارد خروجی یک تابع f به همراه ورودی آن، x می‌باشد یعنی‎ f(x)‏. به مجموعه ورودی‌هایی که یک تابع می‌تواند داشته باشد دامنه و به مجموعه خروجی‌هایی که تابع می‌دهد برد می‌گویند. برای مثال عبارت f(x) = x2 نشان دهنده یک تابع است، که در آن f مقدار x را دریافت می‌کند و x2 را می‌دهد. در این صورت برای ورودی 3 مقدار 9 به دست می‌آید. برای مثال، برای یک مقدار تعریف شده در تابع f می‌توانیم بنویسیم، f(4) = 16.
    معمولاً در تمارین ریاضی برای معرفی کردن یک تابع از کلمه f استفاده می‌کنیم و در پاراگراف بعد تعریف تابع یعنی f(x) = 2x+1 را می‌نویسم و سپس f(4) = 9. وقتی که نامی برای تابع نیاز نباشد اغلب از عبارت y=x2 استفاده می‌شود.
    وقتی که یک تابع را تعریف می‌کنیم، می‌توانیم خودمان نامی به آن بدهیم، برای مثال:
    یکی از خواص تابع این است که برای هر مقدار باید یک جواب وجود داشته باشد، برای مثال عبارت:
    یک تابع نمی‌باشد، زیرا ممکن است برای یک مقدار دو جواب وجود داشته باشد. جذر عدد 9 برابر 3 است و در این رابطه اعداد +3 و -3 به دست می‌آیند. برای ساختن یک تابع ریشه دوم، باید فقط یک جواب برای آن وجود داشته باشد، یعنی:
    که برای هر متغیر غیرمنفی یک جواب غیرمنفی وجود دارد.
    در یک تابع لزومی ندارد که حتماً بر روی عدد علمیاتی انجام گیرد. یک مثال که نشان می‌دهد که عملیاتی بر روی عدد انجام نمی‌شود، تابعی است که پایتخت یک کشور را معین می‌کند. مثلاً Capital(France) = Paris.
    حال کمی دقیق‌تر می‌شویم اما هنوز از مثال‌های خودمانی استفاده می‌کنیم. A و B دو مجموعه هستند. یک تابع از A به B با به هم پیوستن مقادیر منحصر به فرد درون A معین می‌شود و مجموعه B به دست می‌آید. به مجموعه A دامنه تابع می‌گویند؛ مجموعه B هم تمام مقادیری را که تابع می‌تواند داشته باشد شامل می‌شود.
    در بیشتر زمینه‌های ریاضی، اصطلاحات تبدیل و نگاشت معمولاً با تابع هم معنی پنداشته می‌شوند. در هر حال ممکن است که در بعضی زمینه‌های خصوصیات دیگری داشته باشند. برای مثال در هندسه، یک نگاشت گاهی اوقات یک تابع پیوسته تعریف می‌شود.
    تعاریف ریاضی یک تابع
    یک تابع f یک رابطه دوتایی است، به طوری که برای هر x یک و فقط یک y وجود داشته باشد تا x را به y رابطه دهد. مقدار تعریف شده و منحصر به فرد y با عبارت (f(x نشان داده می‌شود.
    به دلیل اینکه دو تعریف برای رابطه دوتایی استفاده می‌شود، ما هم از دوتعریف برای تابع استفاده می‌کنیم.
    تعریف اول
    ساده تعریف رابطه دوتایی عبارتست از: «یک رابطه دوتایی یک زوج مرتب می‌باشد». در این تعریف اگر رابطه دوتایی دلالت بر «کوچکتر از» داشته باشد آن گاه شامل زوج مرتب‌هایی مانند (2, 5) است، چون 2 از 5 کوچکتر است.
    یک تابع مجموعه‌ای از زوج مرتب‌ها است به طوری که اگر (a,b) و (a,c) عضوی از این مجموعه باشند آن گاه b با c برابر باشد. در این صورن تابع مجذور شامل زوج (3, 9) است. رابطه جذر یک تابع نمی‌باشد زیرا این رابطه شامل زوج‌های (9, 3) و (9, -3) است و در این صورت 3 با -3 برابر نیست.
    دامنه تابع مجموعه مقادیر x یعنی مختص‌های اول زوج‌های رابطه مورد نظر است. اگر x در دامنه تابع نباشد آن گاه (f(x هم تعریف نشده‌است.
    برد تابع مجموعه مقادیر y یعنی مختص‌های دوم زوج‌های رابطه مورد نظر است.
    تعریف دوم
    بعضی از نویسندگان نیاز به تعریفی دارند که فقط از زوج‌های مرتب استفاده نکند بلکه از دامنه و برد در تعریف استفاده شود. این گونه نویسندگان به جای تعریف زوج مرتب از سه‌تایی مرتب (X,Y,G) استفاده می‌کنند، که در آن X و Y مجموعه هستند (که به آنها دامنه و برد رابطه می‌گوییم) و G هم زیرمجموعه‌ای از حاصل‌ضرب دکارتی X و Y است (که به آن گراف رابطه می‌گویند). در این صورت تابع رابطه دوتایی است که در آن مقادیر X فقط یک بار در اولین مختص مقادیر G اتفاق می‌افتد. در این تعریف تابع دارای برد منحصر به فرد است؛ این خاصیت در تعریف نخست وجود نداشت.
    شکل تعریف تابع بستگی به مبحث مورد نظر دارد، برای مثال تعریف یک تابع پوشا بدون مشخص کردن برد آن امکان‌ناپذیر است.
    پیشینه تابع
    «تابع»، به عنوان تعریفی در ریاضیات، توسط گاتفرید لایبنیز در سال 1694، با هدف توصیف یک کمیت در رابطه با یک منحنی به وجود آمد، مانند شیب یک نمودار در یک نقطه خاص. امروزه به توابعی که توسط لایبنیز تعریف شدند، توابع مشتق‌پذیر می‌گوییم، اغلب افراد این توابع در هنگام آموختن ریاضی با این گونه توابع برمی خورند. در این گونه توابع افراد می‌توانند در مورد حد و مشتق صحبت کنند. چنین توابعی پایه حسابان را می‌سازند.
    واژه تابع بعدها توسط لئونارد اویلر در قرن هجدهم، برای توصیف یک عبارت یا فرمول شامل متغیرهای گوناگون مورد استفاده قرار گرفت، مانند f(x) = sin(x) + x3.
    در طی قرن نوزدهم، ریاضی‌دانان شروع به فرموله کردن تمام شاخه‌های ریاضی کردند. ویرسترس بیشتر خواهان به وجود آمدن حسابان در علم حساب بود تا در هندسه، یعنی بیشتر طرفدار تعریف اویلر بود.
    در ابتدا، ایده تابع ترجیحاً محدود شد. برای ژوزف فوریه مدعی بود که تمام توابع از سری فوریه پیروی می‌کنند در حالی که امروزه هیچ ریاضی‌دانی این مطلب را قبول ندارد. با گسترش تعریف توابع، ریاضی‌دانان توانستند به مطالعه «عجایب» در ریاضی بپردازند از جمله این که یک تابع پیوسته در هیچ مکان گسستنی نیست. این توابع در ابتدا بیان نظریه‌هایی از روی کنجکاوی فرض می‌شد و آنها از این توابع برای خود یک «غول» ساخته بودند و این امر تا قرن بیستم ادامه داشت.
    تا انتهای قرن نوزدهم ریاضی‌دانان سعی کردند که مباحث ریاضی را با استفاده از نظریه مجموعه فرموله کنند و آنها در هر موضوع ریاضی به دنبال تعریفی بودند که از مجموعه استفاده کند. دیریکله و لوباچوسکی هر یک به طور مستقل و تصادفاً هم زمان تعریف «رسمی» از تابع دادند.
    در این تعریف، یک تابع حالت خاصی از یک رابطه است که در آن برای هر مقدار اولیه یک مقدار ثانویه منحصر به فرد وجود دارد.
    تعریف تابع در علم رایانه، به عنوان حالت خاصی از یک رابطه، به طور گسترده‌تر در منطق و علم تئوری رایانه مطالعه می‌شود.
    «« در جهان هیچ چیز بهتر از راستی نیست »»

  8. Top | #24
    پارسیان (شاپرزفا)
    Bauokstoney آنلاین نیست.
    ورود به پروفایل ایشان

    عنوان کاربر
    ناظـر ســایت
    تاریخ عضویت
    Jan 1970
    شماره عضویت
    3
    نوشته ها
    72,809
    میانگین پست در روز
    4.44
    حالت من : Asabani
    تشکر ها
    1,464
    از این کاربر 18,856 بار در 14,692 ارسال تشکر شده است.

    موضوع پیش فرض رابطه بین ریاضی و فیزیک

    رابطه بین ریاضی و فیزیک
    ریاضیات-مقالات
    نگرش كلی
    فیزیك علمی است كه قوانین حاكم بر جهان طبیعت را بصورت مدون بیان می كند. بنابراین برای ارائه این قوانین بصورت معادلات و روابط ریاضی ، لازم است كه یك فیزیكدان با اصول و قوانین اساسی ریاضی آشنا باشد. التبه در بعضی از علوم دیگر مانند شیمی نیز این ضرورت احساس می شود، ولی اغراق آمیز نیست بگوییم كه ریاضیات بعنوان الفبای فیزیك می باشد. این ضرورت سبب شده است كه درسی تحت عنوان روشهای ریاضی در فیزیك ایجاد شود ضرورت با هم بودن ریاضی و فیزیك.
    اگر تاریخچه پیدایش علوم را مورد توجه قرار دهیم. ملاحظه می گردد كه فیزیك و ریاضی معمولا پا به پای هم گسترش و رشد یافته اند. و اكثر فیزیكدانان قدیمی ، ریاضیدان نیز بوده اند. بعنوان مثال می توان به اسحاق نیوتن ، گالیله و دیگران اشاره كرد. علاوه بر این هر مبحث فیزیك را مد نظر قرار دهیم، ملاحظه می كنیم كه به نوعی ردپایی از ریاضیات در آن وجود دارد. به فرض اگر مبحث سینماتیك حركت را مورد توجه قرار دهیم، خواهیم دید كه اگر بخواهیم سرعت و یا شتاب را تعریف كنیم، بایستی با قوانین مشتقگیری آشنا باشیم تا بتوانیم بگوییم كه مشتق مكان در هر لحظه برابر سرعت لحظه ای و مشتق سرعت در هر لحظه ، شتاب لحظه ای خواهد بود.
    اولین قدم در ریاضی فیزیك
    اولین گام در مطالعه ریاضی فیزیك ، آشنایی با آنالیز برداری است. چون مفاهیم برداری نقش اساسی را در فیزیك بازی می كند. یعنی زمانی كه یك كمیت فیزیكی را تعریف می كنیم، ابتدا باید به آنالیز برداری مراجعه كرده و تكلیف این كمیت را از لحاظ برداری ، اسكالر بودن مشخض كنیم، تا بعد بتوانیم خواص و ویژگیهای این كمیت را بیان كنیم.
    آینده ریاضی فیزیك
    امروزه با پیشرفت علوم كامپیوتری كه توانایی انجام محاسبات بسیار پیچیده ریاضی را در زمانهای بسیار كوتاه دارند، بیشتر فعالیتها در راستای استفاده هر چه بیشتر از رایانه برای حل معادلات ریاضی ، محاسبات طولانی ریاضی ، قرار دارد. به عبارت دیگر پیشرفت علوم ریاضی بویژه ریاضی فیزیك با پیشرفت علوم كامپیوتری همسو شده است.
    پایه های ریاضی فیزیك
    آنالیز برداری، دستگاههای مختصات ، جبر برداری ، جبر كلیدی ، جبر لی ، قضایای برداری ، قوانین تبدیل مختصات به یكدیگر ، جبر تانسوری ، دترمنیان ، ماتریس و نظریه گروه ، توابع مختلط ، توابع مختلط ، جبر توابع مختلط ، بسطهای توابع مختلف ، حساب مانده‌ها ، توابع خاص.
    «« در جهان هیچ چیز بهتر از راستی نیست »»

صفحه 3 از 79 نخستنخست 12345671353 ... آخرینآخرین

کلمات کلیدی این موضوع

پارسیان (شاپرزفا) مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •